2023

Current position: Home > Research > Papers Published > 2023 > 正文

Nature Communications | Guo Feifan's Team Discovers the Role and Mechanisms of Bradykinin in Promoting Thermogenesis in Brown Adipose Tissue and Browning of White Adipose Tissue

Date:2023-05-06 ClickTimes: SourceLink:

2023年5月2日,我院郭非凡教授团队在国际学术期刊Nature Communications上发表了题为“Reduced hepatic bradykinin degradation accounts for cold-induced BAT thermogenesis and WAT browning in male mice”的研究论文。该研究发现急性冷刺激时小鼠血清中缓激肽水平显著上升。利用多种原代细胞模型和组织特异性敲除小鼠,作者发现缓激肽(bradykinin,BK)具有促进褐色脂肪组织产热和白色脂肪米色化的新功能。这项工作加深了人们对缓激肽生理功能以及机体寒冷适应过程的理解和认识,为肥胖等代谢疾病的临床防治提供了可能的新靶标。

机体能量代谢稳态失衡会导致多种慢性代谢性疾病如肥胖的发生。脂肪组织包括褐色脂肪组织和白色脂肪组织。褐脂是一种产热组织。某些刺激下,白脂中会出现与褐色脂肪细胞功能类似的细胞(即米色脂肪),称为白脂米色化。促进褐脂产热和白脂米色化能提高能量消耗,减少脂肪沉积,因此成为防治肥胖的可能途径。

缓激肽是一种具有舒血管和降血压等作用的九肽,是激肽释放酶-激肽系统(kallikrein-kinin system,KKS)的重要组分。早在1979年研究人员就发现,人体血液循环中缓激肽含量会随着体温的降低而显著上升。然而这一现象的生理意义以及缓激肽对脂肪组织的代谢调控作用一直并不清楚。在本研究中,作者首先发现急性冷刺激4 ℃下小鼠血清中缓激肽含量显著增加。与对照小鼠相比,在冷刺激时注射缓激肽中和抗体的小鼠体温下降更快。进一步研究表明,向野生型小鼠腹腔注射缓激肽能够增加体温,提高褐脂耗氧率和解偶联蛋白1(uncoupling protein 1,UCP1)的表达。UCP1可将ATP合成与氧化磷酸化解偶联,使机体储存的化学能以热能的形式释放。此外,缓激肽处理小鼠的白脂发生米色化:白色脂肪组织中脂滴变小,UCP1等多个米色化标志基因的表达上升,耗氧率增加。缓激肽处理褐脂和白脂原代细胞具有类似现象。

缓激肽已知的作用方式是通过结合其受体bradykinin B2 receptor(B2R)来发挥作用。利用B2R特异性抑制剂icatibant和脂肪组织特异性敲除B2R小鼠,作者发现缓激肽通过B2R调控UCP1的表达,褐脂产热和白脂米色化。为进一步阐明缓激肽发挥作用的机制,作者对注射缓激肽的野生型小鼠褐脂进行了转录组测序(RNA-sequencing,RNA-seq)。KEGG通路富集分析表明肾上腺素信号通路显著富集。利用β-肾上腺素受体阻断剂等,作者发现该通路介导了缓激肽对褐脂UCP1表达和体温的快速调控。后续研究表明,一氧化氮(nitric oxide,NO)信号通路也参与了缓激肽对UCP1表达的调控作用。

接着,作者探讨了急性冷刺激时小鼠血清中缓激肽含量升高的机制与意义。研究结果表明,冷刺激时肝脏脂肪酸含量增加从而抑制肝脏脯氨酰内肽酶(prolyl endopeptidase,PREP)活性;肝脏PREP酶活的降低导致缓激肽的降解减少,进而增加血清中缓激肽含量。最后,在探讨缓激肽作为防治肥胖靶点的可能性研究中,作者发现血管紧张素转换酶抑制剂(angiotensin-converting enzyme inhibitors,ACEIs)能通过对ACE的抑制从而增加体内缓激肽含量,促进褐脂产热和白脂米色化,且这一过程依赖于脂肪组织中的B2R。

以上工作发现了缓激肽在机体适应寒冷刺激过程中所起的重要作用。它具有提高UCP1表达、促进褐色脂肪组织产热和白色脂肪米色化的功能。这些功能依赖于B2R、肾上腺素信号通路和NO信号通路(图1)。该研究增加了人们对于器官互作调控机体代谢稳态的新认识,并为后续筛选以缓激肽为靶点的临床转化提供了理论依据。

bwin必赢/附属中山医院青年研究员肖斐、中国科学院上海营养与健康研究所博士生江海宙为本论文共同第一作者,bwin必赢/附属中山医院郭非凡教授为本论文通讯作者。该研究受到国家自然科学基金和国家重点研发计划项目支持。

图1:缓激肽促进褐色脂肪组织产热和白色脂肪米色化的作用与机制示意图

原文链接:https://www.nature.com/articles/s41467-023-38141-0

Prev:Nature Aging | Decoding the microglial aging process, contributions to brain dysfunction

Next:Life Metabolism | Guo Feifan's Team Discovers the Function and Mechanisms of Tryptophan-deficient Diet in Improving Depression-like Behavior